Adaptive Similarity Metric

Sulabh Shrestha sshres2@gmu.edu GMU CS-782, Spring 2021

Metric Learning

- Map data into a representation or embedding space
- Embeddings in the space should have semantic meanings
 - Inputs that are similar should be close to each other
- Similarity depends on the task at hand
 - For images, it's usually the objects belonging same class

Learning with Triplet Margin Loss

- Embedding model: f(.)
- For each individual triplet, $t_i = (x_i, y_i, z_i)$
- Get embeddings for each example in the triplet:
 - \circ $a_i = f(x_i)$
 - \circ p_i = f(y_i)
 - \circ n_i = f(z_i)
- Triplet Loss ^[1]
 - $\circ \quad \mathsf{L}_{\mathrm{margin}}(\mathsf{t}_{\mathsf{i}}) = \max(\mathsf{D}(\mathsf{a}_{\mathsf{i}}\,,\,\mathsf{p}_{\mathsf{i}}) \mathsf{D}(\mathsf{a}_{\mathsf{i}}\,,\,\mathsf{n}_{\mathsf{i}}) + \mathsf{m},\,\mathsf{0})$
 - D is the distance function
 - m is the chosen margin (m >= 0)
 - Encourages anchor to be at least "m" distance farther away from negative than positive
- Margin is fixed for each triplet

Classes vs Instances

- A class is a group of similar objects that belong to a single super-group
 - **Examples: Bottles**
- An instance is a specific object within the class
 - Example: Coca-cola glass bottle
- There can be multiple hierarchies
 - Related to Fine-Grained Classification which a different sub-field

Similarity of Triplets

- All men and women are created equal
- But, all triplets are not
- Margin should be higher for bottom
- But, Margin is fixed
 - \circ Same margin for each triplet

Positive

Anchor

Negative ^[1]

Proposed Method

- Train a classifier, c(.) on the dataset
- Use the classifier (without softmax) as the margin supervision
 - Extract embeddings for the triplet, t_i
 - $\square ca_i = c(x_i)$
 - $\Box \quad cp_i = c(y_i)$
 - $\bullet \quad cn_i = c(z_i)$
 - Calculate the adaptive margin based on the these:
 - $\blacksquare \quad am_i = dist(ca_i, cni) dist(ca_i, cp_i)$
- Loss function
 - $\circ \quad \mathsf{L}_{\mathsf{adapt}}(\mathsf{t}_{\mathsf{i}}) = \mathsf{max}(\ \mathsf{D}(\mathsf{a}_{\mathsf{i}}\ \mathsf{,}\ \mathsf{p}_{\mathsf{i}}) \mathsf{D}(\mathsf{a}_{\mathsf{i}}\ \mathsf{,}\ \mathsf{n}_{\mathsf{i}}) + \mathsf{am}_{\mathsf{i}}, 0)$
- Final loss function
 - Use both fixed margin as well as adaptive margin
 - $L = (1-w) L_{margin} + (w) L_{adapt}$
 - w = Adaptive Loss weight

Proposed Method (Nuances)

- Margins obtained from the classifiers have a wide range (>1)
 - \circ Used directly, L_{margin} is very high compared to L_{adapt}
 - Normalized using the formula:
 - $am_i = [am_i + min(am_i)] / max(am_i) * fixed margin * 2$
 - Range of adaptive margin is now from 0 to 2 times fixed margin

Distribution of normalized adaptive margins when fixed margin=0.1

Proposed Method (Nuances)

- Sampling has to be done separately for two margins
- Example:
 - D_ap = 0.80 D_an = 0.97 D_ap D_an = 0.17
 - \circ fixed m = 0.10

Dataset

- CARS196^[1]
 - Different types of cars
 - Each class has specific Make, Model, Year of the car
 - ~8k Training images
 - ~8k Testing images
 - 196 classes
 - approximately evenly distributed
 - i.e. ~42 instances per class

GMC Terrain SUV 2012

Tesla Model S Sedan 2012

Implementation Details

Metric

0	Learning Rate	0.0001
0	Epochs	80
0	Fixed Margin	0.1
0	Embedding dim	128
0	Classes per batch	64
0	Instances per class	2
0	Validation size	0.05
0	Weight Decay	0.0005

Cla	ssification (2)		
0	Network-1	: Re	sNet18 ^[1]
0	Epochs-1		150
0	Network-2	: Re	sNet50 ^[1]
0	Epochs-2		80
0	Learning Rate		0.001
0	Epochs		80
0	Batch Size		32
0	Validation size		0.05
0	Weight Decay		1e-5

Adaptive Metric \bullet

0	Learning Rate	0.001
0	Adaptive Loss weight	0.1:0.9:0.2
0	Classes per batch	32 (Because 2 models used)

[1] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90

Backbone Network

- ResNet-34 ^[1]
 - 5 34 implies the number of layers
- ResNet-18
 - 18 layers
- ResNet-50
 - 50 layers

ResNet-34^[1]

[1] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90

Evaluation Criteria

- Recall at K
 - For each input, check if there is **at least 1 class** that exists in nearest K-neighbors
 - Average for all inputs
 - Recall at 1 is the most stringent criteria
- Recall@1 and Recall@5 used

Evaluation Results

- Classifier is pretty good already
- All base metric models gain boost from adaptive margin
- R50-R50 is the best overall

Best per type shown in different color

Model Type	Main model	Adaptive-Model Recall@1		Recall@5	
Classifier	ResNet18		0.652	0.843	
Classifier	ResNet50		0.715	0.882	
Metric	ResNet18		0.626	0.839	
Metric	ResNet50		0.680	0.862	
Adaptive Metric	ResNet18	ResNet18	0.685	0.857	
Adaptive Metric	ResNet18	ResNet50	0.684	0.851	
Adaptive Metric	ResNet50	ResNet50	0.734	0.864	

Evaluation Results

• Both SCT and CosFace use different loss function than Triplet

Model Type	Main model	Adaptive-Model	Recall@1	Recall@5	
SCT Loss ^[1]	ResNet18		0.732	0.884 (@4)	
CosFace ^{[2][3]}	ResNet50		0.741		
Metric	ResNet18		0.626	0.839	
Metric	ResNet50		0.680	0.862	
Adaptive Metric	ResNet18	ResNet18	0.685	0.857	
Adaptive Metric	ResNet18	ResNet50	0.684	0.851	
Adaptive Metric	ResNet50	ResNet50	0.734	0.864	

[1]Xuan, H., Stylianou, A., Liu, X., & Pless, R. (2020). Hard Negative Examples are Hard, but Useful. In A. Vedaldi, H. Bischof, T. Brox, & J.-M. Frahm (Eds.), Computer Vision – ECCV 2020 [2]Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., & Liu, W. (2018). CosFace: Large Margin Cosine Loss for Deep Face Recognition. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition [3]Musgrave, K., Belongie, S., & Lim, S.-N. (2020). A Metric Learning Reality Check. ArXiv:2003.08505 [Cs]. http://arxiv.org/abs/2003.08505

Ablation Studies (Weight)

- w = 0.5 is best except for R18-R50
- For R@5, w=0.9 is the best choice for **all**

ResNet18-ResNet18			ResNet18-ResNet50			ResNet50-ResNet50		
Adaptive Loss Weight	R@1	R@5	Adaptive Loss Weight	R@1	R@5	Adaptive Loss Weight	R@1	R@5
0.1	0.663	0.839	0.1	0.690	0.847	0.1	0.723	0.857
0.3	0.682	0.844	0.3	0.687	0.841	0.3		
0.5	0.685	0.857	0.5	0.684	0.851	0.5	0.734	0.864
0.7	0.679	0.857	0.7	0.681	0.851	0.7		
0.9	0.677	0.861	0.9	0.653	0.852	0.9	0.689	0.872

Hyper-parameter searches

- For Metric models
 - Fixed LR performed very low (R@1~0.01)
 - Reduce LR with starting LR = 0.0001 was best
- For Adaptive metric models:
 - Reduce LR on validation saturation was used but not effective as fixed LR

Triplets Sampled

• Adaptive triplets may be different because different margin

Fixed Margin Sampled

Adaptive Margin Sampled

Train and Validation loss

Future Work

- See how the adaptive margin works with other loss functions
- Check performance for scenario where classes are not present
 - Select and label a few classes
 - Train on these examples and use as supervision
- Classifier from related domain but different different dataset