Distracted Driver Detection

CS 747 Semester Project

Angeela Acharya Anita Tadakamalla Sulabh Shrestha

Problem Statement

- 1 out of 5 accidents due to distracted driving
- Initiative by State Farm:

(b) C1: Text left

(a) CO: Drive safe

- Use of Dashboard camera for automatic detection of distracting behaviors
- Classification of each driver's behavior

(d) C3: Text right

• "State Farm Distracted Driver Detection"

(c) C2: Talk left

• Kaggle competition to predict the driver's action in each image

(e) C4: Talk right

• <u>Dataset:</u> 10 possible actions (classes) - driving safe, texting, talking, drinking, etc.

(f) C5: Adjust radio

(g) C6: Drink

(h) C7: Hair and makeup (i) C8: Reaching behind (j) C9: Talk to passanger

Approach

We experimented with the following:

- Building classification models
 - Compare performances of deep learning classification technique
- Attention
 - Focus on relevant spatial location
 - Use importance weighted features
 - Offer some interpretability
- Knowledge Distillation
 - "Deeper the Better" holds only on high capacity GPUs
 - Only smaller models feasible in cars
 - Transfer generalization ability from bigger models to smaller models

Approach: Classification Models

- We experimented with the following classification models:
 - VGG-16, VGG-19, InceptionV3, Xception, ResNet-18, ResNet-101
- Evaluation Metric:
 - Accuracy
 - Logarithmic loss
- Issues: Overfitting
- Solutions:
 - Image Augmentation
 - Ensemble model -- Mean Ensembling: posterior probability is calculated as the mean of the predicted probabilities from the component models

Approach: Attention Networks

- Weight features based on relevance of location
- ResNet 18 Features (m x n x 512)
- P(i,j)
 - \circ 1 x 1 x 512 = 1 time-step
 - m x n locations
- Bi-LSTM
 - Look at all locations P(i,j)
 - Produce appropriate representation
- Fully-Connected
 - Use Bi-LSTM representation
 - Generate 1 attention weight A(i, j)
 - Activation (F):
 - ReLU + L1 Norm
 - Softmax
- Entropy loss for Attention

Attention Visualization (Correct Results)

→ Round(Attention, 2)*100 > 0
→ Model: F=Softmax + Conv. + Entropy

Label: Text Right Attention: around <u>Phone</u>

Label: Drinking Attention: around <u>Bottle</u>

Attention Visualization (Correct Results)

→ Round(Attention, 2)*100 > 0
→ Model: F=Softmax + Conv. + Entropy

Label: Hair and Makeup Attention: around <u>Mirror</u> and <u>Hand</u> Label: Talking on Phone - Right Attention: around <u>Phone</u> (Big Receptive Field)

Attention Visualization (Incorrect Results)

→ Round(Attention, 2)*100 > 0
→ Model: F=Softmax + Conv. + Entropy

Label: Reaching Behind Attention: Wrong Location Label: Talking on Phone - Right Attention: Right location but Wrong label

Approach: Knowledge distillation

Teacher networks: ResNet-18 and ResNet-101

Our approach:

- Train teacher network
 - Try different temperatures, $T = \{1, 4, 8, 12\}$ Ο
 - Increased Entropy \rightarrow Softer Probabilities Ο
- Optimize Student network
 - Soft cross entropy loss: Soft probabilities from teacher network as labels Ο
 - Hard cross entropy loss: One-Hot targets Ο

 $q_i = \frac{exp(z_i/T)}{\sum_i exp(z_i/T)}$

Quantitative Results

Metric	Network					Attention				Knowledge Distillation Students (T=4)		
	VGG- 16	VGG- 19	Xception	ResN 18	ResN 101	Soft+ Conv	Soft+ Conv+ Ent.	ReLU+ Conv	Soft+ Linear	ResN 18	ResN 101	Plain
Train loss/ Entropy	0.41	0.97	0.47	0.17	0.001	3.7304	2.419	3.789	3.321	0.17	0.65	0.36
Val loss	0.56	0.82	0.55	0.16	0.01	0.044	0.028	0.020	0.031	0.30	0.99	0.4
Val acc	0.83	0.76	0.83	0.99	0.996	0.995	0.996	0.996	0.997	0.90	0.84	0.86
Test loss	-	-	-	0.49	0.38	0.829	0.670	0.804	1.000	1.5	2.3	1.16

• Network: ResNet-101 best score in kaggle (Top 16%)

- Distillation: ResNet18 better than ResNet-101 as teacher
- Attention: Softmax Activation with Entropy loss gives best performance

Contributions

- Angeela: Implementation of Knowledge distillation technique, training and validation of ResNet-101 and ResNet-18 models
- Anita: Training and validation of various models, attempted implementation of ensemble model
- Sulabh: Architecture design, implementation and training of the Attention Networks

Thank You