Visual Localization using SIFT features

Sulabh Shrestha

Problem Statement

- Figuring out where the agent is in an environment
 - Location
 - Pose
- Using RGB images captured by the agent
- Assuming a database of reference images
 - Known locations/pose

Data

• Active Vision Dataset ^[1]

- Indoor environment
- Locations sampled at 30 cm
- RGBD taken 30 degrees apart per location

Approach: Creating feature database

• Reference data

- Hand picked representative locations
- For each reference node (location)
 - For each image taken here
 - Calculate SIFT keypoints and descriptors
 - Store top N
- Data-structure
 - \sim Features \rightarrow Image-name
- Query on all other images
- Ground truth
 - Nearest node

Approach: Creating feature database

000410001620101 ing I Num nts = 364

000410001660101 (pg | Num pts = 1256

Approach: Creating feature database

100 200 300 400 500 600

000410012410101 jpg | Num pts = 1249

100 200 300 400 500 600

Approach: Query

- Calculate SIFT keypoints and descriptors
- Match with each keypoint in database
 - Euclidean distance
 - Sort in ascending order
 - Match to closest reference node
 - in feature space

Approach: Enhancements

• SIFT descriptors are **histograms**

- Euclidean distance is not a good measure
- Hellinger or χ^2 measure is better
- Use approximation i.e. Root-SIFT^[1]
 - L1 norm each descriptor
 - Square-root each element
 - Finding Euclidean is approximation to χ^2
- Not all matches are correct
 - Filter using max threshold for distance

- Inference with cv2.BFMatcher / numpy = ~50 min
- Inference with pytorch-gpu matching $= \sim 5 \text{ min}$

Feature type	Distance Threshold	Top-N Ref Key-points per node	Vocabulary size	Mean Accuracy	Mean Average Precision
SIFT	—	—	~54k	75.71	63.39
ROOT-SIFT	-	_	~54k	77.89	65.94
ROOT-SIFT	0.4	_	~54k	84.49	73.93
ROOT-SIFT	0.3	_	~54k	85.29	75.08
ROOT-SIFT	0.2	_	~54k	82.11	70.07
ROOT-SIFT	0.3	5000	~29k	80.29	68.94

• Match in similar viewpoints

• Match in extreme viewpoint change

• Bad matches

